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Abstract—The constitutive equations for an interacting continuum composed of an elastic solid and an incom-
pressible Newtonian fluid are developed. The condition of incompressibility alters the equations previously
obtained by Green and Steel. The concept of thermodynamic pressure is introduced and the new equations are
compared with those developed by previous investigators.

Using these constitutive equations, methods of solution are presented in terms of displacements or a stress
function for the steady state condition. The equations developed are shown to reduce to Darcy’s law for flow of
fluids through a rigid porous medium and Biot’s equation of fluid flow through a linear elastic solid. One and
two-dimensional steady-state problems are solved as examples.

1. INTRODUCTION

TRUESDELL [1, 2] developed the general framework for heterogeneous media, and gave a
comprehensive analysis of four different approaches to a linear theory of diffusion. Using
this approach, Adkins [3-6] has formulated a non-linear theory and discussed the invariance
requirements and the restrictions imposed upon the constitutive equations. Kelly [7] and
Hayday [8] have generalized these theories for chemically reacting media and presented
alternate formalisms. In these works, the equations of mass, momentum and energy balance
were postulated for each component of the mixture neglecting possible thermodynamic
restrictions which might be imposed upon these equations. Green and Naghdi [9] presented
a new approach to the problem in which they proposed a single energy equation and an
entropy production inequality for the whole continuum allowing for chemical and thermal
reactions. By systematic application of invariance requirements, they derived the basic
equations.

Green and Steel [10] applied this theory to derive the constitutive equations for a
mixture of a Newtonian fluid and an elastic solid and also the mixture of two elastic solids.
Following the developments of Green et al. this paper will extend their theory to include
an incompressibility condition on the fluid. The use of this incompressibility condition
alters Green and Steel’s equations and allows a comparison between these continuum

T Part of this paper is taken from the Ph.D. thesis of the first author, submitted to Michigan State University.
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theories and the classical work of Darcy for flow through a porous medium [11-13] and
the field equations developed by Biot for flow through deformable solids [14--26].

2. BASIC EQUATIONS

The motion of a mixture of two components, S, and §,, is referred to fixed Cartesian
coordinates with material coordinates designated by X and Y respectively. The position
of particles at time ¢ is given by

x; = x{X;,1) Vi = y{Y;, 1) 2.1
These particles are considered to occupy the same position at time ¢ so that
Yi = X (2.2)

The velocity and acceleration vectors of S, are given by u; and a; and those of S, by v; and
g;. The densities at time ¢ are p, and p, and the rate of deformation tensors are defined to be

dij = Hu+u) Sy = 3v+os) (2.3)

where a comma denotes partial differentiation with respect to x; or y,.
The vorticity tensors and other mixture variables are defined as follows:

Ty = 3w ;—u;) Ayj = 3v; ;=05 p=pitp;
o 0 p wp @p

D
A . . — = — - ——— —_—= B — _—
pui = pibit Pt =gt ege P = PpITA T

(2.4)

where the numerical superscript on the material time derivative refers to the component
in question. The summation convention is being used in the above equations and through-
out the paper.

The basic balance equations have been developed previously and are presented here
for reference only. The continuity equations for a binary mixture in the absence of chemical
reactions are as follows

(p @pp
Dt : +pyU =0 D 2+P2”k,k = 0. 2.5)
The equations of motion for the mixture are
(00 +Thi+ 01 Fi+ 926 = prai+ pag; (2.6)

where g,; and 1,; are partial stresses of the solid and the fluid respectively and F; and G,
are the body forces per unit mass of each continuum. The partial stresses satisfy the follow-
ing symmetry relation

Gki + Tk!- == Gik -+ T:'k - (27)
The diffusive force 7; is given by

;= 30— T +301(Fi — a) — 3p5(G, — g). (2.8)
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The entropy production inequality, under isothermal conditions, may be written [10]

DA
P + 70— 0) + Ho + Ouddin + 3T+ 7o) S+ How — o) T — Au) 2 0 2.9
where 4 = U~ TS is the Helmholtz free energy, U is the internal energy per unit mass,
S is the entropy per unit mass and T is the temperature.

3. INCOMPRESSIBILITY CONDITION

The following assumptions will be used in this section and throughout the paper.

(a) Both the elastic solid and the fluid are initially at rest under zero initial stresses.

(b) The continuum is initially homogeneous and isotropic and undergoes an isothermal
deformation.

{c) The displacement of the solid, the change in density and velocity as well as their
space and time derivatives remain small during the motion so that higher order terms may
be neglected. Although the field equations will be developed and methods of solution
proposed for a continuum composed of an incompressible Newtonian fluid and a solid,
the incompressibility condition will be presented for the more general case of n incom-
pressible fluids and a linear elastic solid. The initial porosity of the solid is designated by
P, and the initial volume concentrations of the fluids within the pores of the solid by
C*a=1,2,3,...n It may be noted that

Y o= 1, (3.1)
a=1

Let ¥, be the initial volume of an element of the solid and ¥, the volume of the same ele-
ment at t = t. The following relation may be seen to hold

Vi = Vil +epm) (3.2)
where
€ = E(Q&,ﬁ@z)
Yo 2lox;  ox; 3.3)
w; = x;— X;. (3.4)

There is a linear relationship between the compressibility and the volume change of the
pores which may be written as

V=R(V,-V)+P.V (3.5)
or
V = V(Rey+Py) (3.6)

where V is the actual volume of the pores in an element ¥, at time ¢ {only interconnected
pores are considered and the closed pores are treated as part of the solid). R is a constant
expressing the ratio of pore compressibility to the total compressibility.

If p§, pf, pi and V* are the initial density of the fluid «, the initial density of the fluid «
in the mixture, the density of the fluid « in the mixture at time ¢ and the actual volume of
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the fluid « within the volume V, respectively, then

pEVE = piV, fora=1,2,...n (3.7)
and
Y Vi=V. (3.8)
a=1
Also, it may be noted that
pl = C*Pyp} fora =1,2,...n 3.9

By use of equations (3.2), (3.5), (3.7), (3.9) in (3.8), one obtains
" Cpr

) o5 = (P=Po)enn+Po. (3.10)
a=1 i

The continuity equations for the fluids can be written as

6 a
gt+p3‘f;:k=o fora =1,2,...n (3.11)
where f7; is the rate of deformation tensor for the ath fluid and
= pi—pt fora =1,2,...n (3.12)
on* _ op;
— = f =1,2,...n .
3 o ora=12,...n (3.13)

If equation (3.13) and (3.10) are substituted into the partial time derivative of equation
(3.10), one obtains

" 0€pm
Po Y. Cifis+(P—Po)— = 0, (3.14)
a=1

In the case of a binary mixture of a fluid and an elastic solid « = 1 and C' = 1, therefore
equation (3.14) reduces to

Py—R Oe,,,
P, ot (3.15)

0<R<l1 O0<Py<1

S =

where f;; is the rate of deformation tensor of the fluid. Biot [17] has given an incompressi-
bility condition for a mixture of a solid modeled by rigid spheres connected by helical
springs and an incompressible fluid. This relation can be obtained from equation (3.15)
by setting R = 1 and integrating the equation.

The incompressibility condition (3.15) reduces to

fu=0 (3.16)

in the following cases:
(a) steady-state case where de,,,/0t = 0
(b) the solid is rigid so e, = 0.
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4. CONSTITUTIVE EQUATIONS

The constitutive equations for a mixture of an incompressible Newtonian fluid and an
elastic solid may be obtained by applying the incompressibility constraint to the equations
obtained by Green and Steel [10] for a Newtonian fluid and a linear elastic solid. In this
case, the entropy production inequality, as given in [10], should hold provided it satisfies
the constraint condition (3.15).

If the quantity

R—
l:fkk‘*‘ P, Odkk_J = P fu+ 21450, 4.1

where a; = (R—Py)/P, and p is an arbitrary scalar function (Lagrange multiplier), is
added to entropy production inequality, the resulting equation may be treated as a vari-
ational problem. This approach, similar to that used by Mills [27], yields:

1 0x; 0x,{04 0OA _
T = i = P oy BXk(é‘e e, )+“‘ P 42
0A -
Thi = Ty = _ppz‘é;—(sik+p6ik+'lﬁr6ik+2#ﬁk 4.3)
2
94 9p, 1 (34 24)\oe,
= PGy Gy 2 (Be,s+6es,) 5x, Tt “4
where

p=0 A+3u=0 ax=0. (4.5)

The Taylor series expansion for the Helmholtz free energy may be written
ﬁA = AO + alemm + a2n + %aitemmenn + aSemnemn +%‘a6”2 + a8emm’7 (46)

where p = p,+p, and 5 = p—p,. The constants A, «, ... depends upon initial densities
of each substance.

The assumption of zero initial stress implies that 4, = «, = a, = 0. The variable 5
in the equation (4.6) can be also related to the dilatation of the solid, e,,,, by use of (3.11)
and (3.15). By incorporating the above remarks into (4.6) and substituting it into consti-
tutive equations yields

O = Oy = —a POy +2a2e5+ A3€pu0y 4.7)
T = Ty = — POy+ Adu+ 2ufis 4.8)
n, = aU;—V) 4.9)
where
P.—
a; = as ay = (},0

- = 22 =
Gy = 4t Pa,05+a1p306+ a1 P20
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and

1 _ _
—p= a—[alp“a1(.02°‘8 + P50106)Cmm)- (4.10)
1
The scalar function p is equivalent to the thermodynamic pressure defined for a simple
media. Similar constitutive equations, in the absence of the incompressibility constraint,
were obtained by Green and Steel [10]. If, in their equations, an equivalent thermodynamic
pressure is defined as

P = Padeh + P20gEmms (4.11)

then analogy to the theory of simple Newtonian fluids shows that in the case of a com-
pressible fluid this definition serves as an equation of state. In the case of incompressibility,
p introduces a new unknown into the system of equations together with an additional
equation; namely, the incompressibility condition.

It may be seen that the constitutive equation of the solid is coupled with that of the
fluid through the thermodynamic pressure, while the partial stresses of the fluid are coupled
with those of the solid by the solid dilatation through the equation of state or the incom-
pressibility condition. It should be kept in mind that the coefficients in these equations
are not numerically the same as those of the corresponding single medium. However, we
may notice that all the equations must reduce to those for a single elastic solid or fluid
when p, or p, vanishes, respectively.

S. DISPLACEMENT EQUATION

If we substitute the rate of deformation and strain tensor in terms of the displacements
and velocities into the equations (4.7)+4.9), and combining with equations of motion and
(3.15), we obtain

02..
—a,Vp+(ay +an)V(V - @) +a,V?e—aU—V) = ﬁ‘a_:) (5.1)
, oV
= Vp+(A+ V(Y- V) + V2V +aU=V) = 5, (5.2)
vv-av.e (5.3)
T o :

where the body forces (external) are neglected. The above equations are written in tensorial
form where V denotes the conventional del operator.
In the steady-state case the time derivatives of dependent variables vanish, yielding

—a,Vp+(a, +a))V(V- o)+ a,V’o+aV =0 (5.4)
—Vp+uvV3vV—-aVvV =0 (5.5)
V-V=0 (5.6)

where use has been made of the equation (5.6) in (5.5). The equations (5.4)<5.6) constitute
seven differential equations for seven unknowns, V, @ and p. By application of V operator
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to equation (5.5) and making use of (5.6), one obtains:

Vip =0. (5.7
The general solution of V consists of the solution of the reduced equation
uviV—aVv =0 (5.8)

plus the particular integral of equation (5.5). If the general solution of (5.8) is denoted by
V®, and a particular solution for the equation (5.5) may be written

1
V particular = —an

then the complete solution for (5.5) is

V= V(’)—%Vp. (5.9)

The general solution V® must also satisfy the condition (5.6). In the two dimensional case,
equation (5.6) reduces to

vy vy _

0. .
ox oy (5.10)

It then follows that the velocity vector V" can be derived from a scalar function ¥ such that:
il oy
v — yo = _ZF 5.11
x Oy y Ox (-11)

Substituting for VY’ and V¥ into the equation (5.8) yields:

Oy —ay] = 0 5.12)
oy

%[uvlw —ay] = 0. (5.13)

The above pair of equations imply that the expression inside the bracket is a constant.
This constant can be assumed to be zero without any loss of generality in the velocity
solution. Therefore, the problem reduces to finding a function y satisfying the Helmholtz
equation,

uViy—ay = 0. (5.14)
It may be seen that the general solution of the velocity field consists of the linear combi-
nation of two scalar functions which satisfy the Laplace and Helmholtz equations. In order

to obtain a general solution for the displacements of the solid, we add equation (5.4) and
(5.5) yielding

—(a, +1)Vp+(a, +a;)V(V - ©) +a,V?0 + uV2V = 0. (5.15)

Equation (5.15) shows that the vector function a, V% + uV?V is irrotational (referring to
Helmbholtz’s representation) and hence can be expressed as the gradient of a scalar
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function ¢,,
a,V2o+uV3V = V¢, (5.16)

where without loss of generality and under sufficient smoothness and integrability con-
ditions we can find another scalar function ¢ such that

¢, = V2¢. (5.17)
Noting
vV = v2Vy( ) (5.18)
equation (5.16) may be written as
VZ{a,0+ pV—V¢] = 0. (5.19)
Let
a,0+uV—-Vo =T, {5.20)
where I is a vector function which satisfied
VT = 0. (5.21)
The general solution of w is
o= ;12—(1‘+V¢)—(%V. (5.22)
Taking the divergence of equation (5.4) and making use of (5.6) and (5.7), one obtains
V(V-®) = 0. (5.23)
Combining (5.15}45.17) gives:
—(a; + )Vp+(ay+a;)V(V- @)+ VVip = 0. (5.24)
Again taking the divergence of equation (5.24) and using the relations (5.7) and (5.23) yields
Vi = 0. (5.25)

Hence ¢ is a biharmonic scalar function, and the general solution of the system of equations
{5.4)+5.6) reduces to a linear combination of the general solutions of some classical equa-
tions whose properties are well established. The solution to a particular problem would be
obtained by choice of these functions such that they satisfy the prescribed boundary con-
ditions. Note that ¢ and I' are not independent and must satisfy the condition:

(@ tla, a+as o (5.26)
2a,+a, 2a,+a,

Vip =
The above relation obtained by substituting the o from (5.22) into (5.15) and making use

of (5.6).

6. SOLUTION OF THE STEADY-STATE PLANE STRAIN PROBLEMS

In this section, the displacements of the solid as well as the velocities of the fluid are in
x—y plane and independent of z coordinate. It was shown, in the previous section, that the
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equation governing the motion of the fluid is independent of the solid deformations and
therefore can be solved independently. The equation governing the solid deformations,
however, contain fluid velocity terms. Once the velocity of the fluid is obtained from the
governing Helmholtz equation, the stresses in the solid may be obtained by use of a stress
function. The solid equilibrium equations, in the absence of external body forces are,

agx + ag;u av, =0 6.1)
‘;“y” +%+ av, = 0. 62)
The above equations are identically satisfied if
Opx = p+g—a.rg—;/jdx (6.3)
Oyy =P+§272+afy%dy 6.4)

where 6 is the stress function for solid and y is as defined by (5.11). Again, as in the theory
of elasticity, the stress function 8 is the only unknown function, but the compatibility
relations place a condition on the otherwise arbitrary stress function. The compatibility
conditions of the present theory are identical to those of linear elasticity, and for plane
strain, the only remaining equation is:
62exx+62
oy?
Substituting for e,,, e,, and e,, from constitutive relations in term of the stresses and sub-
stituting for stresses from (6.3)+6.5) and making use of (5.7) yields
1 X 33!// y 63‘//
-V4 = | —dx— | ——=dy. 6.7
a ay? x ax? (6.7)
The general solution for 8 is obtained by addition of the particular solution of (6.7) to a

biharmonic scalar function. The arbitrary constants will be chosen to satisfy the prescribed
boundary conditions.

2
€y _ 26 €.y

ox? 0x0y

(6.6)

7. DISCUSSION AND EVALUATION OF THEORIES

It is beneficial to examine Green and Steel’s theory and the work presented here in
comparison with that of Darcy’s for fluid flow through underformable porous media and
the Biot theory [14-25] for flow of fluids through deformable media.

Darcy’s law asserts that, macroscopically the velocity is proportional to the pressure
gradient acting on the fluid

v Ky .1)
u
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where u is the viscosity of the fluid and k is the permeability of the solid. The permeability,
k,in the above equation has dimension of length squared and expresses the ease of the fluid
flow through porous media. The monographs and the literature on the field give detailed
discussions of the permeability and the various formulas expressing it in terms of porosity
and other variables.

This law together with the equation of state and the continuity equation constitute a
complete system of equations. These equations supplemented by initial and boundary
conditions provide all the necessary information for the solution of any particular problem.
For incompressible fluids, the equations of state and continuity reduce to

p = const. (7.2)
and hence
Vip = 0. (7.3)

According to the above equations, there is no distinction between steady-state and non-
steady-state problems for incompressible fluids. In order to compare the above fundamental
equations to those of the present theory, the solid will be assumed to be undeformable and
hence ® = u = 0. The equations (5.2} and (5.3) reduce to

1
Eviviv= Cvp (7.4)
a a

V'V=0 V)p=0. (7.5)

In order to reduce (7.4) and (7.1), the diffusive coefficient a should be assumed as

u
=, 7.
a=7 (1.6)
This implies that the diffusive force vanished for ideal fluids. Substituting (7.6) and (7.4)
yields

k
—kV2V+V = = Vp. (1.7)
u

The above equation can be reduced to (7.1) if the term kV?2V is negligible compared to V.
Since the velocity as well as its space derivatives are of the same order, k has to be small
to perform this reduction. For many materials this is the case.

However, on the other extreme, if k is large, equation (7.7) becomes

—uViV =Vp (7.8)

which is the equation for slow viscous flow of fluids. The reduced equation (7.4) with the
special choice of a from (7.6) includes two different extremes, namely, a pure slow viscous
flow of fluids, and flow of fluid through highly impermeable materials.

Atkin et al. [28] has given one possible set of boundary conditions for which the problem
has a unique solution. He noted that at each point on the boundary two vector boundary
conditions and a scalar function for thermal considerations must be specified. It is easily
seen from equations (7.4) and (7.5) and the remarks in [28], that in the steady-state case, a
vector boundary condition should be prescribed at each point on the boundary for the
fluid part only. This may be noted also from purely physical considerations.
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Contrary to the above remarks the Darcy equation does not allow specification of a
vector boundary condition but only a scalar function. It may be seen that this occurred
because of neglect of the term kV2V. In the case of low permeability, the error arising from
the above simplification is insignificant far from the boundary while the error might be
quite serious near and at the boundaries.

Crochet and Neghdi [29] derived a one-dimensional equation for uniform flow through
porous media which is similar to Darcy’s law. They point out that a general form of Darcy’s
law can be obtained from the constitutive equations and the use of other field equations.
The equation (7.7) was obtained in a similar manner and can be considered as a generalized
Darcy’s law. It is obvious that by relaxing some of the assumptions used here, a more
general law could be obtained.

8. BIOT’S THEORY

A major extension of the classical theory of flow through an elastically deformable
media was presented by Biot [14-25]. He obtained the following constitutive equations for
the stresses

6;; = 2Ne;;+ Meyd;;+ Qed;; (8.1)
1;; = (Qe+ Le)d;; = ady; (8.2)

where ¢ is the dilation of the fluid by
e=V- o, (8.3)

and o, is the fluid displacement vector. o equals — p, where B is the fraction of fluid element
per unit section and p is the fluid pressure. The equation of motion in the absence of body
forces for the quasi-static theory is

(6;j+0d;;); =0 8.9
and the modified Darcy’s law is
Vo = a(V-L). (8.5)

For the dynamic theory [20], the equations become :

]

Gijj = E(Pl 1+ p1a0;) —alv; —u) (8.6)
0

g = a—t(p12ui+p220i)+a(vi_ui) 8.7

where p, 1+ 012 = P1,P22+P12 = P2, P12 I8 @ mass coupling parameter. The interacting
continuum theory can be reduced to Biot’s theory if terms with viscosity coefficients A and u
are eliminated from the constitutive equation for the fluid. This can be justified if the vis-
cosity is low enough such that the only dominating term in the expression for the fluid
stress would be the hydrostatic pressure.
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In the dynamic theory, equations (8.6), (8.7) can be written in the following form:

doy; Oy G,
ox, = P Thagtimw—abiw) s
oo dv; 0
a_xi = pZE——pn&(vi—ui)—ka(vi—uE). (8.9)

From the standpoint of Green and Naghdi’s theory, it may be noted that the diffusive
force according to Biot’s formula is

0
;= plZE(Ui—ui)_a(vi_ui)- (8.10)

Thus in Biot’s dynamic theory, the diffusive force is the same as that of the quasi-static
plus the term p,,(8/0t)(v; —u;). This last term does not satisfy the requirement of frame
indifference. Its existence, however, can be justified if the diffusive force in the corres-
ponding non-linear theory has this term as one of its linear terms.

9. ONE-DIMENSIONAL PROBLEM OF INFINITE PLATE

As an example of this theory, consider the infinite plate resting on a rigid highly
permeable medium and bounded at x = O and x = h. A constant fluid pressure p, is applied
to the face x = 0. Assume that the lateral displacements can be neglected and the only
non-vanishing components of the velocity and displacement vectors are

W, =0, (x) 0= 0,X) ©.1)

and the boundary conditions are:

atx =0 Ot T = —Do (9.2
atx = h w,=0 p=0. (9.3)
Equation (5.10) reduces to:
*p
-— = 0. 9.4
e 9.4)

Integrating the above equation and using the boundary condition (9.3), yields
P = Cyx—h) 9.5)

where C, is an arbitrary constant. The relations (5.6) and (5.5) give

v, = —&. (9.6)
a
Using the results (9.5), (9.6) and (5.4) and integrating, gives
w, = E"J"—l)-cﬂ(x2 —h)+C (x—h) 9.7)

* 7 2Qa,+as)
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where use has been made of the boundary condition (9.3),, and C, is a new arbitrary
constant.
The fluid stresses are as follows:

17;; = — Colx—h)d;;. 9.8)
The solid stresses are
0
0., = (a;+ 2a2)—(—%‘-— a,p 9.9)
0w,
Oy = 0, = —a1p+a3—5;— (9.10)
Substituting for w, and p yields
0, = Co(x+aih)+C,(2a;+a;) (9.12)
(a; +1)a;Cy
= = —a,Co(x—h)+————+C,a,. 9.13
Oy = 0Oy a;Co(x—h)+ 2a,+4ay) +Cqa; (9.13)
The only remaining boundary condition (9.2) gives the constant C, in terms of C,:
—Po+Coh(l1+ay)
C, = 9.14
! (2a,+as) 0.19)

It may be seen that the solution is indeterminate within a constant C,. However, this indeter-
minacy may be removed by specifying the surface porosity at the face x = 0, and therefore
prescribing the separate values of g, and p at that face.

10. SEMI-INFINITE STRIP PROBLEM
As another illustration, consider an infinitely long strip of an elastic solid with width =.
The Cartesian system (x, y, z) will be taken as shown in Fig. 1.
A fluid pressure p is applied to the surface y = 0. Under the above conditions it is con-
ceivable to assume all variables to be functions of x and y only.

—

z

|

Y 00

F1G. 1. Semi-infinite strip.
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The boundary conditions are

aty =0:p= A,cosx,v, =0,0,,= —A,cosx,0,,=0 (10.1)
atx = ig:p=0,vy=f(y),axx=0,oxy=0 (10.2)
aty =o:p=00v,=v,=0. (10.3)

The solution for a general fluid pressure at y = 0 may be obtained in a similar manner by
use of Fourier analysis. The constants 4, and 4, depend on fluid pressure and porosity
factor P,. Equation (5.7) reduces to

é*p 8%p
DAL TR Ay s} 10.4
it oy? (104)
Since p is even in x and decaying in y, the solution of equation (10.4) has the following form:
p = Ae P cos fx. (10.5)

Applying the boundary conditions (10.1); and (10.2), gives the particular solution for p
to be:

p=AeYcosx. (10.6)
Equation (5.18) reduces to

0MY(x, y) N *Y(x, y)
M ax? oy?

Noting that the velocity components v, and v, are decaying in y and are odd and even
in x respectively, the following form may be assumed for y:

} —ay(x,y) = 0. (10.7)

Y = B,e @ TaWhYgin ax+ f C, cos yy sh (y2+%) x dy. (10.8)
0

The velocity components of the fluid are obtained from (5.9), where use has been made of
(10.8) and (10.7) and are as follows:

1 , a\? yo
v =EA1e‘ys1nx——Ba(a2+;) e~ @ ey sin ox (10.9)

—f C,7ysinpy sh\/(y2+g)x dy
0 I

A,y 2
v, = —e Y cos x — Byae ~* "M% cog g x
a

y
© , a\? , a
—~1 C,\y*+—] cosyych [|y*+—]xdy.
0 H H

Application of boundary conditions (10.1), yields

(10.10)

+
a=1 and Ba(1+3) A (10.11)
I a
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The only condition on the fluid velocity remaining to be satisfied is (10.2),. The constant
C, should be chosen such that

m 3
fo) = —L Cy(y2+%) ch \/(y2+%)gdy. (10.12)

Consider the case where f(y) = 0 and, therefore, C, = 0. The velocity components become

b, = ey —e~0 ram ] sin x (10.13)
a
-%
vy = ﬁ[e‘h (1+g) e"”““"’/’y] COS X. (10.14)
a "
The fluid stresses become
Ty = [(——l)e v 2# ‘”"/“)’/”:| cos X (10.15)
2 :
1,, = —A1|:(2#+1)e y— #e_‘”“/"’/”] cos x (10.16)
-
Ty = uA|: 2e” y+((1+ ) (1+E) )e‘““/“”/’y] sin x. (10.17)
a U

Since the boundary conditions of the solid part are such that the surface tractions are all
known, the problem can be solved by use of a stress function. Obtaining ¥ from (10.8).

W= % 1+“) e~ (L+am sy gin x (10.18)
equation (6.17) becomes
V40 = A he L +am%y cog x (10.19)

where

-1
h= (1+f)—(1+9) .
p H
The solution of the above equation is

0=0,+A, h se~(1Ham%y cos x (10.20)

where 0, is a biharmonic scalar function of x and y and the second term is the particular
solution of (10.19). The above problem is equivalent to the similar strip problem of classical
elasticity under identical loading except for the extra term coming from the interaction
in the form of a body force. The methods of classical elasticity are applicable if the effect of
interaction is treated as a prescribed body force. The details of this solution will not be
presented here.

The problems of Sections 9 and 10 illustrate the utilization of the solution methods
presented in earlier sections. The boundary conditions given in the example in Section 10
are typical of an actual physical problem. It can be easily seen that these boundary con-
ditions, necessary to define a unique physical problem, cannot be satisfied by conventional
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approaches to the problem of flow through porous media due to the nature of differential
equation {(Darcy’s law) used. In this case, the constants B, and C, in (10.8) provide the addi-
tional constants required. We noted that the errors involved in neglecting solution (10.8)
would diminish as o/u becomes large as can be easily seen from the equations. However,
the errors remain large for small enough values of y even if a/u is large. This shows that the
conventional approach, while it might produce good results far enough from the boundaries,
would generally fail near the boundaries of the regions under consideration.
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AOcTpakT—OnpenensoTcss KOHCTUTYTUBHbBIE YpaBHeHust Asis B3aumopneilcrBylolueil cnjiomIHOH cpenbi,
COCTOsILLIEH U3 YIIPYTOro TBEPAOro Tejla U HECKMMAEMOMN HbIOTOHOBOMR XUIKOCTH. YCIOBHE HECKHMAEMOCTH
W3MEHSAET YpaBHEHHS, MOJyYyeHHble paHbine I'puHoM u Crunem. IpuBoAMTCA HOBas KOHLEMNLMA TEPMO-
IUHAMMWYECKOTO AaBiieHusA. HoBble ypaBHEHUst CPABHUBAIOTCS C TAKUMH e, BHIBEACHHBIMU NPEAbIAYLLUMHU
HCCAEHOBATENAMH.

Ucronbiys 3TH ypaBHEHMsI, MPEASIATaeTCs METON pelueHMs B BUAe (DYHKUMH HNepeMelieHni uau
HanpsKEeHHH [JIA YCIOBHUA CTALMOHAPHOTO COCTOsHMsA. Hacrosiuue ypaBHEHMA YKa3blBalOT, YTO OHM
cBOIATCA K 3akoH JlapcH, s TeYEeHUs XUAKOCTEN CKBO3b KECTKYHO IIOPHCTYIO Cpelly H K ypaBHeuHIo buo,
SIS TEYEHHUS )XKUIOKOCTH CKBO3b JIMHEHHOe, ynpyroe Teno. B kauecTBe npumepoB peluaroTcs 3ajayu Ais
OHOMEDPHOTO W JBYXMEPHOIO CTRUMOHAPHOIO COCTOSIHUS.



